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Lecture 27 

Physics 404 

 

We reviewed the problem of N non-interacting spin-1/2 particles on a 1D lattice in an external 
magnetic field 𝐵𝐵�⃗ .  The energy of each spin is 𝑈𝑈 = −𝜇𝜇 ∙ 𝐵𝐵�⃗ , which has one of two values – 𝜇𝜇𝐵𝐵, or +𝜇𝜇𝐵𝐵.  
We can calculate the thermal average magnetic moment starting with the partition function 𝑍𝑍 =
∑ 𝑒𝑒−𝜀𝜀𝑠𝑠/𝜏𝜏
𝑠𝑠 = 2𝑐𝑐𝑜𝑜𝑜𝑜ℎ �𝜇𝜇𝐵𝐵

𝜏𝜏
�, as 𝑚𝑚 = 1

 𝑍𝑍
∑ 𝑚𝑚𝑠𝑠  𝑒𝑒−𝜀𝜀𝑠𝑠/𝜏𝜏
𝑠𝑠 = 𝜇𝜇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝜇𝜇𝐵𝐵

𝜏𝜏
�.  We can calculate the magnetization 𝑀𝑀 

(magnetic moment per unit volume) of the entire sample as 𝑀𝑀 = 𝑁𝑁
𝑉𝑉
𝑚𝑚 = 𝑛𝑛𝜇𝜇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝜇𝜇𝐵𝐵

𝜏𝜏
�.  This model of 

non-interacting spins predicts a paramagnetic state in which the sample develops a non-zero 
magnetization in the presence of an external field B, but the magnetization will disappear if the external 
field is turned off.  Can we create a material that is ferromagnetic – i.e. it develops a magnetization in 
the presence of an external field, but it retains that magnetization even after the external field is turned 
off?  The answer is yes, if we now include interactions between the spins. 

 The crudest way to include interactions is to make another “mean field approximation.”  We 
assume that the spins now exert “peer pressure” and try to create a state in which all of the spins are 
aligned the same way.  This “pressure” is manifested through an internal field that all of the other spins 
exert on a given spin in the lattice.  We ignore the details of the spin orientations around the given spin 
and simply posit the existence of a “mean field” 𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏  that is produced by the “bath” of all the 
neighboring spins on the spin of interest.  We simply take 𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏  to be proportional to the posited 
magnetization of the system: 𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏 = 𝜆𝜆𝑀𝑀, where 𝜆𝜆 is a fixed number between 0 and 1.  This leads 
to a self-consistency condition for the mean field approximation based on the above expression for the 

magnetization in the absence of an external field: 𝑀𝑀 = 𝑛𝑛𝜇𝜇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝜇𝜇𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ℎ𝑏𝑏𝑏𝑏𝑏𝑏
𝜏𝜏

� = 𝑛𝑛𝜇𝜇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝜇𝜇𝜆𝜆𝑀𝑀
𝜏𝜏
�.  This is a 

transcendental equation for the magnetization as a function of temperature.  Define 𝑚𝑚 ≡ 𝑀𝑀/𝑛𝑛𝜇𝜇 and 
𝑡𝑡 ≡ 𝜏𝜏/𝑛𝑛𝜇𝜇2𝜆𝜆 and the self-consistency equation becomes simply  𝑚𝑚 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑚𝑚/𝑡𝑡).  This equation can be 
solved graphically or numerically.  The numerical result for 𝑚𝑚(𝑡𝑡) is shown below: 
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Note that 𝑚𝑚(𝑡𝑡 > 1) = 0, so there is only a “disordered” paramagnetic state at high 
temperatures.  There is a non-zero magnetization only for 𝑡𝑡 < 1, and this is the “ordered” ferromagnetic 
state.  Here a large fraction of the spins have chosen to align in the same direction and produce a non-
zero magnetization for the entire sample. 

Note that the system has to choose one of two directions to align it’s spins.  This choice breaks 
the symmetry of the energy equation (which assigns the same energy to all the spins “up” and all the 
spins “down”, in the absence of an external field).  This is an example of spontaneous symmetry 
breaking, which is an important concept in physics.  The non-zero magnetization is also an example of a 
“collective behavior” in which many individual microscopic spins work together to form a state with 
macroscopic properties (magnetization) that are easily measured. 

We also discussed the Ising model, which is a more sophisticated treatment of the 
ferromagnetic to paramagnetic phase transition.  This model can also account for anti-ferromagnetism, 
in which alternating spins point in opposite directions in the ordered state.  The model is embodied in a 
Hamiltonian (total energy of all the spins): 𝐻𝐻 = ∑ −𝜇𝜇𝑖𝑖���⃗ °𝐵𝐵�⃗ + ∑ 𝐽𝐽𝑖𝑖𝑖𝑖  𝜇𝜇𝑖𝑖���⃗ °𝜇𝜇𝑗𝑗���⃗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  {𝑖𝑖,𝑗𝑗 }
𝐴𝐴𝐴𝐴𝐴𝐴  𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑖𝑖 , where the 

spins 𝜇𝜇𝑖𝑖���⃗  sit on a regular lattice in 1, 2 or 3 dimensions, and 𝐽𝐽𝑖𝑖𝑖𝑖  is called the “exchange interaction.”  The 
exchange interaction describes the interaction between neighboring spins and can be calculated from 
quantum mechanics.  Positive values of 𝐽𝐽𝑖𝑖𝑖𝑖   encourage anti-ferromagnetism, while negative values favor 
ferromagnetic ordering.  This model has been solved exactly in 1D and 2D, but not 3D.  There are some 
very interesting applets that simulate the dynamics of this model available on the class web site. 

 


